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ABSTRACT

The research work seeks to find out the efficiency of some methods of estimation of autoregressive model
where the underlying distribution is positively skewed. To examine the performance of estimators on
positively skewed data, data were simulated from various distributions (Weibull, Beta, Gamma, and
Exponential distribution) along different sample sizes. Outliers are one of the major problems affecting
probability distributions and methods of estimations. Outlier points can therefore indicate faulty data,
erroneous procedures, or areas where a certain theory might not be valid. In line with the objectives of this
work, outliers were injected at different percentage (10%, 25% and 50%) in every stage of the simulation
process. Data fitted were estimated using Ordinary Least Square, Maximum Likelihood, BURG and Yule-
walker methods of estimation to compare the efficiency of these estimators. Data simulated were from
sample sizes n=5, n=10, n=25, n=50, n=100, n=200, n=500, n=1000, n=2000 and n=5000 were fitted to
check the consistencies of the aforementioned estimators. The shape and scale parameter of Weibull,
Gamma, and Beta distribution were varied at 2 and 1, to check the pattern in which the estimated results
vary. The performance of Beta distribution is better in all the sample sizes irrespective of the orders being
used. Order 3 and 4 under MLE and order 2,3,4 under OLS have the best estimates while the other sample
sizes have small estimates and are the same. Beta distribution performs better than other distributions. The
shape and scale parameter of Beta have little or no effect on the distribution itself.
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INTRODUCTION

Time series modelling is a dynamic research
area that has attracted the attention of the
research community over the last few decades.
The main aim of time series modelling is to
carefully collect and rigorously study the past
observations of a time series to develop an
appropriate model that describes the inherent
structure of the series. This model is then used to
generate future values for the series, i.e., to
make forecasts. Time series forecasting can thus
be termed the act of predicting the future by
understanding the past'. Due to the
indispensable importance of time series
forecasting in numerous practical fields such as
business, economics, finance, science and
engineering, etc.?, proper care should be taken to
fit an adequate model to the underlying time
series. It is obvious that successful time series
forecasting depends on an appropriate model fit.
Over many years, researchers have made a lot of
efforts to develop efficient models to improve
forecasting accuracy. As a result, various
important time series forecasting models have
evolved in the literature. One of the most
popular and frequently used stochastic time
series models is the Autoregressive Integrated
Moving Average (ARIMA)®. The basic
assumption made to implement this model is
that the considered time series is linear and
follows a particular  known statistical
distribution, such as the normal distribution. The
ARIMA model has subclasses of other models,

such as the autoregressive (AR)* moving

average (MA)® and autoregressive moving
average (ARMA)® models.

For seasonal time series forecasting, Afrifa-
Yamoah et al. 2016 had proposed a quite
successful variation of the ARIMA model, viz.
the Seasonal ARIMA (SARIMA)". The
popularity of the ARIMA model is mainly due
to its flexibility to represent several varieties of
time series with simplicity, as well as the
associated Box-Jenkins methodology for an
optimal model-building process® But the severe
limitation of these models is the pre-assumed
linear form of the associated time series, which
becomes inadequate in many practical situations.
To overcome this drawback, various non-linear
stochastic models have been proposed in the
literature®;, however, from an implementation
point of view, these are not as straight-forward
and simple as the ARIMA models.
Autoregressive  models are a class of
specifications where one attempts to model and
predict financial variables using only
information contained in their own past values
and possibly current and past values of
observation. Indeed, it is a time series model;
unlike moving average and autoregressive
moving average models, it deals with only
observed values. Time series models are usually
a-theoretical, implying that their construction
and use are not based upon any underlying
theoretical model of the behaviour of a variable.
Instead, time series models are an attempt to
capture empirically relevant features of the
observed data that may have arisen from a

variety of different (but unspecified) structural
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models. An important class of time series
models is the family of autoregressive integrated
moving average (ARIMA) models, usually
associated with. The estimation of coefficients in
a simple auto-regressive model is an important
problem and has received a great deal of
attention in the literature. Most of the work
reported is, however, based on the assumption of
normality’%*2 They assumed normality but based
their estimators on censored samples. They
showed that the resulting estimators are robust to
plausible deviations from normality. In recent
years, however, it has been recognised that the
underlying distribution is, in most situations,
basically non-normal Beta and Gamma,**

The problem, therefore, is to develop efficient
estimators of coefficients in autoregressive
models when the underlying distribution is non-
normal. The distributions to be considered are
only positively skewed continuous distributions
like lognormal, exponential, and gamma. Their
performance will be compared with the
positively ~ skewed normal  distribution.
Naturally, one would prefer the best estimators,
which are fully efficient. Preferably, these
estimators should also be robust to plausible
deviations from an assumed model. #** studied
the estimation in autoregressive models with the
underlying distribution being a shift-scaled
Student’s t distribution. They developed the
likelihood  (MML)

estimators of the parameters and showed that the

modified maximum

proposed estimators had closed forms and were

remarkably efficient and robust.

Outliers are a frequent issue in autoregressive
regression models, as they have negative
impacts on the least squares estimators. To solve
this issue, numerous regression estimation
strategies have been proposed. The majority of
these methods are extensions of the traditional
least squares method. In the regression scenario,
a few additional robust strategies have been
researched on both theoretical and empirical
bases. However, in the context of time series and
econometrics, the best estimator(s) of
autoregressive models that incorporate a certain
percentage of outliers for non-normal data have
not drawn much attention*5 A common
problem in autoregressive regression models is
outliers, which produce undesirable effects on
the least squares estimators. Many regression
estimation techniques have been suggested to
deal with this problem. The majority of such
techniques are developed from the classical least
squares. Some other robust approaches have
been investigated in the regression case, both on
theoretical and empirical grounds. However, the
best estimator(s) of autoregressive models that
contain some proportion of outliers for non-
normal data has not received more attention in
the context of time series and econometrics.

A common problem in autoregressive regression
models is outliers, which produce undesirable
effects on the least squares estimators. Many
regression estimation techniques have been
suggested to deal with this problem. The
majority of such techniques are developed from
the classical least squares. An outlier can cause

serious problems in statistical analysis. Outliers
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can occur by chancer4tio in any distribution, but
they often indicate either measurement error or
that the population has a heavy-tailed
distribution. In the former case, one wishes to
discard them or use statistics that are robust to
outliers, while in the latter case, they indicate
that the distribution has high skewness and that
one should be very cautious when using tools or

intuitions that assume a normal distribution.

Outlier points can therefore indicate faulty data,
erroneous procedures, or areas where a certain
theory might not be valid. However, in large
samples, a small number of outliers is to be
expected (and not due to any anomalous
condition). Outliers, being the most extreme
observations, may  include  the sample
maximum, sample minimum, or both, depending
on whether they are extremely high or low.
However, the sample maximum and minimum
are not always outliers because they may not be
unusually far from other observations.

However, to address this problem, this research
made use of a non- Gaussian autoregressive
model with outliers to get the best estimators
that are efficient and consistent across the
autoregressive order (1-4).

The aim of this research is to Examine and
Analyze the robustness of some estimate
methods of autoregressive model where the
underline distribution is positively skewed in the
presence of outliers using simulation study at
different sample sizes. The specific objectives

are to:

1. examine the properties of these
estimators when a proportion of
outliers are introduced in the samples

2. propose a suitable estimator for non-
Gaussian Autoregressive model with
outliers

3. Analyze the effect of outliers on the
estimators

4. Determine the best estimator at various
sample sizes and distributions

Methods of estimation

We need to only concern ourselves with the
problem of estimating the parameters in
autoregressive models. In practice, then we treat
the pth difference of the original time series as
the time series from which we estimate the
parameters of the complete model. For
simplicity, we shall let ag, a4, ..., a,denote our
observed autoregressive process even though it
may be an appropriate difference of the original
series. We first discuss the method-of maximum

likelihood estimator, and least squares estimator.

Maximum Likelihood Estimation
For any set of observations, Y1, Y2,...,Yn, time
series or not, the likelihood function L is defined
to be the joint probability density of obtaining
the data actually observed. However, it is
considered as a function of the unknown
parameters in the model with the observed data
held fixed. For ARIMA models, L will be a
function of the o’s, 0’s, p, and c2given the
observations Y1, Yz...,Yn. The maximum
likelihood estimators are then defined as those
values of the parameters for which the data
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actually observed are most likely, that is, the
values that maximize the likelihood function *°.
We begin by looking in detail at the AR model.
The most common assumption is that the white
noise terms are independent, normally
distributed random variables with zero means
and common standard deviationo, . The
probability density function (pdf) of each e is
then

1 2
(2no2) zexp (— %) for — o < e,
e

and, by independence, the joint pdf for e, es...,
enis

n
1
(2na?) "V 2 exp (— 2022e3>

€ t=2

Auto Regressive Models of Order P
AR=q, + a,Y;_; + et

AR=q, + a,Y,_q + ay,Y_, + et

AR(P)ZCZO + 0(1Yt_1 + azyt_z + -+ ath_p +

et

Ordinary Least squares

Consider the first-order case where

Vi —p=001—1)+e

We can view this as a regression model with
predictor variable Y1 and response variable
Y. Least squares estimation then proceeds by

minimizing the sum of squares of the differences
(Yr —)—0(Yy — )

Since only Y1, Ya,...,Ysare observed, we can only

sum fromt=2tot=n. Let

Se(@,1) = Eial(Ye — ) = 0(Ye—q — ]°

Taking%—i” = 0, we have

aa_S: — ?:2 2[(Yt — [l) — (D(Yt—l - ‘u)](—]. +

@) =0

When simplifying and solving

L[S, Y, — 0T, Y, ]

b= nao
Similarly when differentiating with respect to @
we have

3S:.(0,¥) _
g

N1 —7) =0

— Yo (Y= (Y1 -T)
Y, (Y1)

t=22[(Y = V) = 0¥ —

)

Following the same procedure we can obtain
estimation of parameters for second and higher
orders of autoregressive model !’ for detail of

estimations.

Yule Walker Method

The Yule-Walker Method block estimates the
power spectral density (PSD) of the input using
the Yule-Walker AR method. This method, also
called the autocorrelation method, fits an
autoregressive (AR) model to the windowed
input data by minimizing the forward prediction
error in the least-squares sense. This formulation
leads to the Yule-Walker equations, which are

solved by Levinson-Durbin recursion®’.

45| Page



Global Professionals Multidisciplinary Practices Journal Vol. 1 No. 2, August 2024

Burg Method

The Burg Method block estimates the power
spectral density (PSD) of the input frame using
the Burg method. This method fits an
autoregressive (AR) model to the signal by
minimizing (least-squares) the forward and
backward prediction errors while constraining
the AR parameters to satisfy the Levinson-
Durbin recursion.

Distributions Considered

Weibull Distribution

A random variable x has a weibull distribution if
and only if the probability density is given by

oy ={ K oo

forx >0
0 elsewhere

Gamma Model.
A random variable x has a gamma distribution,
and it is referred to as a gamma random variable

if and only if its probability density is given by

_a
x@=1,"F

flx) = Ber(a)
0 elsewhere

forx >0

Where o>0 and >0.

The gamma AR(1) process(X;), with gamma
(B(1 —a),v) Marginal distribution  was
constructed by Sim (1990) as

Xe=axXe_1te

Where (g;) is a sequence of 1ID gamma (8, v)
random variables with §,v > 0and the operator

‘¢’ is defined as in model?. The marginal density

of (X;) and its conditional density are
respectively,

feG) = [B(1 — a)]"x" " exp[-B(1 — a)x] /
I{v)and

(v-1)

Xenj/Xix/y) = 0(55) ° exp[=0(x+

@y)]ly-1[20(xy):]

whered = B(1-a)/(I-a’),0<a <1, and 1/(z) is the
modified Bessel function of the first kind and of
order r. Another well-developed gamma model
is the GAR'model of *'. The GAR! model was
constructed from the simple difference equation?

Beta Distribution
A random variable x has a beta distribution and
it is referred to as a beta random variable if and

only if its probability density is given by

r(a+B)x* 1(1-x)F-1
fx) = r(@)r(B)
0 elsewhere

for0<x <1

Where o>0 and >0.

Exponential Model

A random variable x has an exponential
distribution and it is referred to as an
exponential random variable if and only if its

probability density is given by

Flx) = {%e_g forx>0

0 elsewhere

Where 6>0

By assuming that the process [ Xt] has an

exponential marginal PDF with parameter X,

46 |Page



Global Professionals Multidisciplinary Practices Journal Vol. 1 No. 2, August 2024

Gaver and Lewis (1980) showed that the
innovation process &; of model (1) take the form

_ { 0 with probability
€ T 1E, with probability 1 — «

where O<a <1 and (Ey)is a sequence of 11D

exponential random variables with parameter .

The conditional density of X;, ; given X; = yis

fXisj/Xi(X/Y) = a8(x —aly) +x (1
—al)exp[— » (x —a/y)] U (x
- ajy),

-0 <x, y< o

whered (X) is the Dirac delta function and U(u) is
the unit step function. This exponential AR
'model has been generalized by Golubev® to the
two-parameter NEAR ! model and the three-
parameter GEAR! model, respectively. Both
models have a tractable joint PDF and both are
likely candidates for our model-building

approach.

Design of Simulation Studies

Simulation studies use computer intensive
procedures to test particular hypotheses and
assess the appropriateness and accuracy of a
variety of statistical methods in relation to the
known truth. These techniques provide empirical
estimation of the sampling distribution of the
parameters of interest that could not be achieved
from a single study and enable the estimation of
accuracy measures, such as the bias in the
estimates of interest, as the truth is known (Kim
et al., 2014). Simulation studies are increasingly
being used in the medical literature for a wide

variety of situations. In addition, simulations can

be used as instructional tools to help with the
understanding of many statistical concepts 8.
Designing high quality simulations that reflect
the complex situations seen in practice, such as
in randomized controlled trials or prognostic
factor studies, is not a simple process.
Simulation studies should be designed with
similar rigour to any real data study, since the
results are expected to represent the results of
simultaneously performing many real studies.
Unfortunately, in very few published simulation
studies are sufficient details provided to assess
the integrity of the study design or allow readers
to understand fully all the processes required
when designing their own simulation study.
Performing any simulation study should involve
careful consideration of all design aspects of the
study prior to commencement of the study from
establishing the aims of the study, the
procedures for performing and analyzing the
simulation study through to the presentation of
any results obtained. These are generic issues
that should be considered irrespective of the type
of simulation study but there may also be further
criteria specific to the area of interest, for
example survival data. It is important for
researchers to know the criteria for designing a
good quality simulation study. The aim of this is
to provide a comprehensive evaluation of the
generic issues to consider when performing any
simulation study, together with a simple
checklist for researchers to follow to help
improve the design, conduct and reporting of
future simulation studies. The basic concepts

underpinning the important considerations will
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be discussed, but full technical details are not
provided and the readers are directed towards
the literature 28, General considerations are
addressed rather than the specific considerations
for particular situations where simulations are
extremely useful, such as in Bayesian clinical
trials design® sample size determination®® or in
studies of missing data. A small formal review
of the -current practice within published
simulation studies is also presented

Simulation Study
The following distributions were wused in
simulating:

Q) Weibul Distribution

(i) Gamma Distribution

(iii) Beta Distribution

(iv) Exponential Distribution
Sample sizes n of 5, 10, 20, 50, 100, 200, 500,
1000, 2000 and 5000 were considered to account

for small sizes Mild sizes and large Sizes.

Furthermore, the following methods of
estimation were considered in relative to their

respective orders varying from order 1 to order 4
Data Analysis

R-package was used in simulating data with
sample size ranging from n=5, 10, 25, 50, 100,
200, 500, 1000, 2000 and 5000. Order 1 to 4
were analysed. The tables below show the

summary result of the analysis.

The table below indicates the best distribution
and sample sizes of order one to four estimate
for all estimators with 25% outliers. The table
explains that using the method of AIC, the best
distribution is the Beta distribution and the
estimator method is maximum likelihood
estimate at order one to four and a sample size
of n = 50.

Summary of Simulated Data with Twenty-Five (25) Percent Outliers

Sample size n Beta Order 1 Beta Order 2 Beta Order 3 Beta Order 4
MLE MLE MLE MLE
30 0.07006 0.06719 0.06719 0.06719
50 0.04674 0.04674 0.04674 0.04674
100 0.06483 0.06206 0.06016 0.05882
500 0.07539 0.07269 0.06945 0.06921
1000 0.06619 0.06213 0.06079 0.05953
2000 0.06837 0.0661 0.06414 0.06289
5000 0.06821 0.06596 0.06444 0.06289
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Result of Simulated Data with Fifty (50) Percent Outliers

Sample size n Beta order 1 Beta order 2 Beta Order 3 Beta Order 4
OoLS OoLS oLS oLS

30 0.06064 0.06064 0.06064 0.06064

50 0.05724 0.05375 0.0535 0.04822

100 0.07136 0.06538 0.06133 0.06037

500 0.0787 0.7474 0.06988 0.06936

1000 0.07065 0.06599 0.06406 0.06255

2000 0.07215 0.06911 0.06661 0.06479

5000 0.07175 0.06825 0.06584 0.064579

The table above indicates the best distribution and sample sizes of order one estimate for all estimators
with 50% outliers. The table explains that using the method of AIC, the best distribution is the Beta

distribution, with Ordinary least square with a sample size of n = 50 as it have the lowest value at order

Best DISTRIBUTION estimate across sample sizes and Orders without outliers

SAMPLE SIZE OLS ORDER1 OLS ORDER?2 OLS ORDER3 OLS ORDER 4

N=30

N=50 0.07428 0.07428 0.07428 0.07428

N=100 0.06341 0.06341 0.06341 0.06341

N=500 0.06318 0.06318 0.06318 0.06318
N=1000 0.06047 0.06047 0.06047 0.06047
N=2000 0.05778 0.05778 0.05778 0.05778
N=5000 0.05511 0.05511 0.05511 0.05511

The key observation from the table is that as the OLS estimates, and the model selection can be
sample size increases, the Ordinary Least Square more flexible. However by method of AIC the
(OLS) values become more consistent across the best distribution is the Beta distribution with the
different model orders (1, 2, 3, and 4). This ordinary least square estimate at order one to
suggests that with larger sample sizes, the choice four and sample size n = 5000

of model order may have a smaller impact on the
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Conclusion

The performance of Beta distribution is better in
all the sample sizes irrespective of the orders
being used. Order 3 and 4 under MLE and order
2,3,4 under OLS have the best estimates while
the other sample sizes have small estimates and
are the same.

Beta distribution perform better than other
distributions. The shape and scale parameter of
Beta have little or no effect on the distribution
itself. The result from the outlier inclusion
showed that beta distribution was consistent
irrespective of the distribution, sample sizes and
the order of Autoregressive model. At sample
size 100, the estimate of BURG and MLE are
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