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ABSTRACT 

The research work seeks to find out the efficiency of some methods of estimation of autoregressive model 

where the underlying distribution is positively skewed. To examine the performance of estimators on 

positively skewed data, data were simulated from various distributions (Weibull, Beta, Gamma, and 

Exponential distribution) along different sample sizes. Outliers are one of the major problems affecting 

probability distributions and methods of estimations. Outlier points can therefore indicate faulty data, 

erroneous procedures, or areas where a certain theory might not be valid. In line with the objectives of this 

work, outliers were injected at different percentage (10%, 25% and 50%) in every stage of the simulation 

process. Data fitted were estimated using Ordinary Least Square, Maximum Likelihood, BURG and Yule-

walker methods of estimation to compare the efficiency of these estimators. Data simulated were from 

sample sizes n=5, n=10, n=25, n=50, n=100, n=200, n=500, n=1000, n=2000 and n=5000 were fitted to 

check the consistencies of the aforementioned estimators. The shape and scale parameter of Weibull, 

Gamma, and Beta distribution were varied at 2 and 1, to check the pattern in which the estimated results 

vary. The performance of Beta distribution is better in all the sample sizes irrespective of the orders being 

used. Order 3 and 4 under MLE and order 2,3,4 under OLS have the best estimates while the other sample 

sizes have small estimates and are the same. Beta distribution performs better than other distributions. The 

shape and scale parameter of Beta have little or no effect on the distribution itself. 

Keywords: Autoregressive models, Non-Guassian, Outliers, Simulation, Estimation 

 

EISSN: 3043-6052 

Vol 1, No 2: August, 2024  

An open Access Peer-Reviewed 

Journal 

mailto:seyegbemiga@yahoo.com


Global Professionals Multidisciplinary Practices Journal Vol. 1 No. 2, August 2024 

 

42 | P a g e  
 

INTRODUCTION 

Time series modelling is a dynamic research 

area that has attracted the attention of the 

research community over the last few decades. 

The main aim of time series modelling is to 

carefully collect and rigorously study the past 

observations of a time series to develop an 

appropriate model that describes the inherent 

structure of the series. This model is then used to 

generate future values for the series, i.e., to 

make forecasts. Time series forecasting can thus 

be termed the act of predicting the future by 

understanding the past1. Due to the 

indispensable importance of time series 

forecasting in numerous practical fields such as 

business, economics, finance, science and 

engineering, etc.2, proper care should be taken to 

fit an adequate model to the underlying time 

series. It is obvious that successful time series 

forecasting depends on an appropriate model fit. 

Over many years, researchers have made a lot of 

efforts to develop efficient models to improve 

forecasting accuracy. As a result, various 

important time series forecasting models have 

evolved in the literature. One of the most 

popular and frequently used stochastic time 

series models is the Autoregressive Integrated 

Moving Average (ARIMA)3. The basic 

assumption made to implement this model is 

that the considered time series is linear and 

follows a particular known statistical 

distribution, such as the normal distribution. The 

ARIMA model has subclasses of other models, 

such as the autoregressive (AR)4, moving 

average (MA)5 and autoregressive moving 

average (ARMA)6 models. 

For seasonal time series forecasting, Afrifa-

Yamoah et al. 2016 had proposed a quite 

successful variation of the ARIMA model, viz. 

the Seasonal ARIMA (SARIMA)7. The 

popularity of the ARIMA model is mainly due 

to its flexibility to represent several varieties of 

time series with simplicity, as well as the 

associated Box-Jenkins methodology for an 

optimal model-building process8. But the severe 

limitation of these models is the pre-assumed 

linear form of the associated time series, which 

becomes inadequate in many practical situations. 

To overcome this drawback, various non-linear 

stochastic models have been proposed in the 

literature9; however, from an implementation 

point of view, these are not as straight-forward 

and simple as the ARIMA models. 

Autoregressive models are a class of 

specifications where one attempts to model and 

predict financial variables using only 

information contained in their own past values 

and possibly current and past values of 

observation. Indeed, it is a time series model; 

unlike moving average and autoregressive 

moving average models, it deals with only 

observed values. Time series models are usually 

a-theoretical, implying that their construction 

and use are not based upon any underlying 

theoretical model of the behaviour of a variable. 

Instead, time series models are an attempt to 

capture empirically relevant features of the 

observed data that may have arisen from a 

variety of different (but unspecified) structural 
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models. An important class of time series 

models is the family of autoregressive integrated 

moving average (ARIMA) models, usually 

associated with. The estimation of coefficients in 

a simple auto-regressive model is an important 

problem and has received a great deal of 

attention in the literature. Most of the work 

reported is, however, based on the assumption of 

normality10-12 They assumed normality but based 

their estimators on censored samples. They 

showed that the resulting estimators are robust to 

plausible deviations from normality. In recent 

years, however, it has been recognised that the 

underlying distribution is, in most situations, 

basically non-normal Beta and Gamma,13. 

The problem, therefore, is to develop efficient 

estimators of coefficients in autoregressive 

models when the underlying distribution is non-

normal. The distributions to be considered are 

only positively skewed continuous distributions 

like lognormal, exponential, and gamma. Their 

performance will be compared with the 

positively skewed normal distribution14. 

Naturally, one would prefer the best estimators, 

which are fully efficient. Preferably, these 

estimators should also be robust to plausible 

deviations from an assumed model. 2.15 studied 

the estimation in autoregressive models with the 

underlying distribution being a shift-scaled 

Student’s t distribution. They developed the 

modified maximum likelihood (MML) 

estimators of the parameters and showed that the 

proposed estimators had closed forms and were 

remarkably efficient and robust. 

Outliers are a frequent issue in autoregressive 

regression models, as they have negative 

impacts on the least squares estimators. To solve 

this issue, numerous regression estimation 

strategies have been proposed. The majority of 

these methods are extensions of the traditional 

least squares method. In the regression scenario, 

a few additional robust strategies have been 

researched on both theoretical and empirical 

bases. However, in the context of time series and 

econometrics, the best estimator(s) of 

autoregressive models that incorporate a certain 

percentage of outliers for non-normal data have 

not drawn much attention3,6,15 A common 

problem in autoregressive regression models is 

outliers, which produce undesirable effects on 

the least squares estimators. Many regression 

estimation techniques have been suggested to 

deal with this problem. The majority of such 

techniques are developed from the classical least 

squares. Some other robust approaches have 

been investigated in the regression case, both on 

theoretical and empirical grounds. However, the 

best estimator(s) of autoregressive models that 

contain some proportion of outliers for non-

normal data has not received more attention in 

the context of time series and econometrics. 

A common problem in autoregressive regression 

models is outliers, which produce undesirable 

effects on the least squares estimators. Many 

regression estimation techniques have been 

suggested to deal with this problem. The 

majority of such techniques are developed from 

the classical least squares. An outlier can cause 

serious problems in statistical analysis. Outliers 
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can occur by chancer4tio in any distribution, but 

they often indicate either measurement error or 

that the population has a heavy-tailed 

distribution. In the former case, one wishes to 

discard them or use statistics that are robust to 

outliers, while in the latter case, they indicate 

that the distribution has high skewness and that 

one should be very cautious when using tools or 

intuitions that assume a normal distribution.  

Outlier points can therefore indicate faulty data, 

erroneous procedures, or areas where a certain 

theory might not be valid. However, in large 

samples, a small number of outliers is to be 

expected (and not due to any anomalous 

condition). Outliers, being the most extreme 

observations, may include the sample 

maximum, sample minimum, or both, depending 

on whether they are extremely high or low. 

However, the sample maximum and minimum 

are not always outliers because they may not be 

unusually far from other observations. 

However, to address this problem, this research 

made use of a non- Gaussian autoregressive 

model with outliers to get the best estimators 

that are efficient and consistent across the 

autoregressive order (1-4). 

The aim of this research is to Examine and 

Analyze the robustness of some estimate 

methods of autoregressive model where the 

underline distribution is positively skewed in the 

presence of outliers using simulation study at 

different sample sizes. The specific objectives 

are to: 

1. examine the properties of these 

estimators when a proportion of 

outliers are introduced in the samples   

2. propose a suitable estimator for non-

Gaussian Autoregressive model with 

outliers  

3. Analyze the effect of outliers on the 

estimators 

4. Determine the best estimator at various 

sample sizes and distributions  

Methods of estimation 

We need to only concern ourselves with the 

problem of estimating the parameters in 

autoregressive models. In practice, then we treat 

the pth difference of the original time series as 

the time series from which we estimate the 

parameters of the complete model. For 

simplicity, we shall let 𝛼0, 𝛼1, … , 𝛼𝑝denote our 

observed autoregressive process even though it 

may be an appropriate difference of the original 

series. We first discuss the method-of maximum 

likelihood estimator, and least squares estimator. 

Maximum Likelihood Estimation  

For any set of observations, Y1, Y2,…,Yn, time 

series or not, the likelihood function L is defined 

to be the joint probability density of obtaining 

the data actually observed. However, it is 

considered as a function of the unknown 

parameters in the model with the observed data 

held fixed. For ARIMA models, L will be a 

function of the α’s, θ’s, μ, and 𝜎𝑒
2given the 

observations Y1, Y2,…,Yn. The maximum 

likelihood estimators are then defined as those 

values of the parameters for which the data 
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actually observed are most likely, that is, the 

values that maximize the likelihood function 16. 

We begin by looking in detail at the AR1 model. 

The most common assumption is that the white 

noise terms are independent, normally 

distributed random variables with zero means 

and common standard deviation𝜎𝑒 . The 

probability density function (pdf) of each et is 

then 

(2𝜋𝜎𝑒
2)−1

2 exp (−
𝑒𝑡

2

2𝜎𝑒
2) 𝑓𝑜𝑟 − ∞ < 𝑒𝑡∞                                                                              

and, by independence, the joint pdf for e2, e3…, 

en is                                                     

(2𝜋𝜎𝑒
2)−(𝑛−1)/2 exp (−

1

2𝜎𝑒
2 ∑ 𝑒𝑡

2

𝑛

𝑡=2

) 

Auto Regressive Models of Order P 

AR1=𝛼0 + 𝛼1𝑌𝑡−1 + 𝑒𝑡    

              

AR2=𝛼0 + 𝛼1𝑌𝑡−1 + 𝛼2𝑌𝑡−2 + 𝑒𝑡  

                 

.AR(P)=𝛼0 + 𝛼1𝑌𝑡−1 + 𝛼2𝑌𝑡−2 + ⋯ + 𝛼𝑝𝑌𝑡−𝑝 +

𝑒𝑡             

Ordinary Least squares 

Consider the first-order case where 

𝑌𝑡 − 𝜇 = ∅(𝑌𝑡−1 − 𝜇) + 𝑒𝑡   

                  

We can view this as a regression model with 

predictor variable Yt− 1 and response variable 

Yt. Least squares estimation then proceeds by 

minimizing the sum of squares of the differences 

(𝑌𝑡 − 𝜇)−∅(𝑌𝑡−1 − 𝜇)    

             

Since only Y1, Y2,…,Ynare observed, we can only 

sum from t = 2 to t = n. Let  

𝑆𝑐(∅, 𝜇) = ∑ [(𝑌𝑡 − 𝜇) − ∅(𝑌𝑡−1 − 𝜇)]2𝑛
𝑡=2  

                

Taking
𝜕𝑆𝑐

𝜕𝜇
= 0, we have    

             

𝜕𝑆𝑐

𝜕𝜇
= ∑ 2[(𝑌𝑡 − 𝜇) − ∅(𝑌𝑡−1 − 𝜇)](−1 +𝑛

𝑡=2

∅) = 0              

 

When simplifying and solving 

𝜇̂ =
1

(𝑛−1)(1−∅)
[∑ 𝑌𝑡 − ∅ ∑ 𝑌𝑡−1

𝑛
𝑡=2

𝑛
𝑡=2 ]  

                

Similarly when differentiating with respect to ∅ 

we have 

𝜕𝑆𝑐(∅,𝑌̅)

𝜕∅
= ∑ 2[(𝑌𝑡 − 𝑌̅) − ∅(𝑌𝑡−1 −𝑛

𝑡=2

𝑌̅)](𝑌𝑡−1 − 𝑌̅) = 0               

∅̂ =
∑ (𝑌𝑡−𝑌̅)(𝑌𝑡−1−𝑌̅)𝑛

𝑡=2

∑ (𝑌𝑡−1−𝑌̅)𝑛
𝑡=2

2     

                  

Following the same procedure we can obtain 

estimation of parameters for second and higher 

orders of autoregressive model 17 for detail of 

estimations. 

Yule Walker Method 

The Yule-Walker Method block estimates the 

power spectral density (PSD) of the input using 

the Yule-Walker AR method. This method, also 

called the autocorrelation method, fits an 

autoregressive (AR) model to the windowed 

input data by minimizing the forward prediction 

error in the least-squares sense. This formulation 

leads to the Yule-Walker equations, which are 

solved by Levinson-Durbin recursion17. 
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Burg Method 

The Burg Method block estimates the power 

spectral density (PSD) of the input frame using 

the Burg method. This method fits an 

autoregressive (AR) model to the signal by 

minimizing (least-squares) the forward and 

backward prediction errors while constraining 

the AR parameters to satisfy the Levinson-

Durbin recursion. 

Distributions Considered 

Weibull Distribution  

A random variable x has a weibull distribution if 

and only if the probability density is given by 

𝑓(𝑥) = { 𝐾𝑥𝛽−1

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
𝑒−𝛼𝑥𝛽

          𝑓𝑜𝑟 𝑥 > 0` 

               

Gamma Model.  

A random variable x has a gamma distribution, 

and it is referred to as a gamma random variable 

if and only if its probability density is given by 

𝑓(𝑥) = {
𝑥𝛼−1𝑒

−
𝛼
𝛽

𝛽𝛼𝑟(𝛼)

0  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                  𝑓𝑜𝑟 𝑥 > 0 

                 

                Where α>0 and β>0. 

The gamma AR(1) process(𝑋𝑡), with gamma 

(𝛽(1 − 𝛼), 𝑣) Marginal distribution was 

constructed by Sim (1990) as 

𝑋𝑡 = 𝛼 ∗ 𝑋𝑡−1+ 𝜀𝑡    

               

Where (𝜀𝑡) is a sequence of IID gamma (𝛽, 𝑣) 

random variables with 𝛽, 𝑣 > 0and the operator 

‘∗’ is defined as in model2. The marginal density 

of (𝑋𝑡) and its conditional density are 

respectively, 

𝑓𝑥(𝑥) = [𝛽(1 − 𝛼)]𝑣𝑥𝑣−1 exp[−𝛽(1 − 𝛼)𝑥] /

(𝑣)and                

𝑓𝑋𝑖+𝑗/𝑋𝑖(𝑥/𝑦) = 𝜃 (
𝑥

𝛼𝑗𝑦
)

(𝑣−1)

2
exp [−θ(x +

αjy)]v−1[2θ(αjxy)
1

2]               

where𝜃 = 𝛽(1-𝛼)/(l-𝛼𝑗),0<𝛼 <1, and Ir(z) is the 

modified Bessel function of the first kind and of 

order r. Another well-developed gamma model 

is the GAR1model of 17. The GAR1 model was 

constructed from the simple difference equation1  

Beta Distribution 

A random variable x has a beta distribution and 

it is referred to as a beta random variable if and 

only if its probability density is given by 

𝑓(𝑥) = {
ᴦ(𝛼+𝛽)𝑥𝛼−1(1−𝑥)𝛽−1

ᴦ(𝛼)ᴦ(𝛽)
   𝑓𝑜𝑟 0 < 𝑥 < 1

0   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

Where α>0 and β>0. 

Exponential Model 

A random variable x has an exponential 

distribution and it is referred to as an 

exponential random variable if and only if its 

probability density is given by 

𝑓(𝑥) = {
1

𝜃
𝑒−

𝑥

𝜃      𝑓𝑜𝑟 𝑥 > 0

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
   

           

Where 𝜃>0 

By assuming that the process [ Xt] has an 

exponential marginal PDF with parameter Xt, 
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Gaver and Lewis (1980) showed that the 

innovation process 𝜀𝑡 of model (1) take the form  

𝜀𝑡 = {
0         with probability α

𝐸𝑡       with probability 1 − α
 

where 0<𝛼 <1 and (Et)is a sequence of IID 

exponential random variables with parameter ⋋. 

The conditional density of 𝑋𝑖+𝑗 given 𝑋𝑡 = 𝑦𝑖𝑠 

𝑓𝑋𝑖+𝑗/𝑋𝑖(𝑋/𝑌) =  𝛼𝑗𝛿(𝑥 − 𝛼𝑗𝑦) +⋋ (1

− 𝛼𝑗)exp [− ⋋ (𝑥 − 𝛼𝑗𝑦)] ∪ (𝑥

− 𝛼𝑗𝑦),     

-∞ < 𝑥,   𝑦 < ∞    

                         

where𝛿(x) is the Dirac delta function and U(u) is 

the unit step function. This exponential AR 

1model has been generalized by Golubev6. to the 

two-parameter NEAR 1 model and the three-

parameter GEAR1 model, respectively. Both 

models have a tractable joint PDF and both are 

likely candidates for our model-building 

approach. 

Design of Simulation Studies 

Simulation studies use computer intensive 

procedures to test particular hypotheses and 

assess the appropriateness and accuracy of a 

variety of statistical methods in relation to the 

known truth. These techniques provide empirical 

estimation of the sampling distribution of the 

parameters of interest that could not be achieved 

from a single study and enable the estimation of 

accuracy measures, such as the bias in the 

estimates of interest, as the truth is known (Kim 

et al., 2014). Simulation studies are increasingly 

being used in the medical literature for a wide 

variety of situations. In addition, simulations can 

be used as instructional tools to help with the 

understanding of many statistical concepts 18. 

Designing high quality simulations that reflect 

the complex situations seen in practice, such as 

in randomized controlled trials or prognostic 

factor studies, is not a simple process. 

Simulation studies should be designed with 

similar rigour to any real data study, since the 

results are expected to represent the results of 

simultaneously performing many real studies. 

Unfortunately, in very few published simulation 

studies are sufficient details provided to assess 

the integrity of the study design or allow readers 

to understand fully all the processes required 

when designing their own simulation study. 

Performing any simulation study should involve 

careful consideration of all design aspects of the 

study prior to commencement of the study from 

establishing the aims of the study, the 

procedures for performing and analyzing the 

simulation study through to the presentation of 

any results obtained. These are generic issues 

that should be considered irrespective of the type 

of simulation study but there may also be further 

criteria specific to the area of interest, for 

example survival data. It is important for 

researchers to know the criteria for designing a 

good quality simulation study. The aim of this is 

to provide a comprehensive evaluation of the 

generic issues to consider when performing any 

simulation study, together with a simple 

checklist for researchers to follow to help 

improve the design, conduct and reporting of 

future simulation studies. The basic concepts 

underpinning the important considerations will 
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be discussed, but full technical details are not 

provided and the readers are directed towards 

the literature 2,18. General considerations are 

addressed rather than the specific considerations 

for particular situations where simulations are 

extremely useful, such as in Bayesian clinical 

trials design3 sample size determination16 or in 

studies of missing data. A small formal review 

of the current practice within published 

simulation studies is also presented 

Simulation Study 

The following distributions were used in 

simulating: 

(i) Weibul Distribution 

(ii) Gamma Distribution 

(iii)  Beta Distribution 

(iv) Exponential Distribution 

Sample sizes n of 5, 10, 20, 50, 100, 200, 500, 

1000, 2000 and 5000 were considered to account 

for small sizes Mild sizes and large Sizes. 

Furthermore, the following methods of 

estimation were considered in relative to their 

respective orders varying from order 1 to order 4 

Data Analysis  

R-package was used in simulating data with 

sample size ranging from n=5, 10, 25, 50, 100, 

200, 500, 1000, 2000 and 5000. Order 1 to 4 

were analysed. The tables below show the 

summary result of the analysis. 

The table below indicates the best distribution 

and sample sizes of order one to four estimate 

for all estimators with 25% outliers. The table 

explains that using the method of AIC, the best 

distribution is the Beta distribution and the 

estimator method is maximum likelihood 

estimate at order one to four and a sample size 

of 𝑛 = 50.   

 

 

 

Summary of Simulated Data with Twenty-Five (25) Percent Outliers 

Sample size n Beta Order 1 

MLE 

Beta Order 2 

MLE 

Beta Order 3 

MLE 

Beta Order 4 

MLE 

30 0.07006 0.06719 0.06719 0.06719 

50 0.04674 0.04674 0.04674 0.04674 

100 0.06483 0.06206 0.06016 0.05882 

500 0.07539 0.07269 0.06945 0.06921 

1000 0.06619 0.06213 0.06079 0.05953 

2000 0.06837 0.0661 0.06414 0.06289 

5000 0.06821 0.06596 0.06444 0.06289 
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Result of Simulated Data with Fifty (50) Percent Outliers 

Sample size n Beta order 1 

OLS 

Beta order 2 

OLS 

Beta Order 3 

OLS 

Beta Order 4 

OLS 

30 0.06064 0.06064 0.06064 0.06064 

50 0.05724 0.05375 0.0535 0.04822 

100 0.07136 0.06538 0.06133 0.06037 

500 0.0787 0.7474 0.06988 0.06936 

1000 0.07065 0.06599 0.06406 0.06255 

2000 0.07215 0.06911 0.06661 0.06479 

5000 0.07175 0.06825 0.06584 0.064579 

 

The table above indicates the best distribution and sample sizes of order one estimate for all estimators 

with 50% outliers. The table explains that using the method of AIC, the best distribution is the Beta 

distribution,  with Ordinary least square with a sample size of n = 50 as it have the lowest value at order  

 

 

Best DISTRIBUTION estimate across sample sizes and Orders without outliers 

SAMPLE SIZE OLS  ORDER 1 OLS  ORDER 2 OLS  ORDER 3 OLS  ORDER 4 

N= 30     

N=50 0.07428 0.07428 0.07428 0.07428 

N=100 0.06341 0.06341 0.06341 0.06341 

N=500 0.06318 0.06318 0.06318 0.06318 

N=1000 0.06047 0.06047 0.06047 0.06047 

N=2000 0.05778 0.05778 0.05778 0.05778 

N=5000 0.05511 0.05511 0.05511 0.05511 

 

 

The key observation from the table is that as the 

sample size increases, the Ordinary Least Square 

(OLS) values become more consistent across the 

different model orders (1, 2, 3, and 4). This 

suggests that with larger sample sizes, the choice 

of model order may have a smaller impact on the 

OLS estimates, and the model selection can be 

more flexible. However by method of AIC the 

best distribution is the Beta distribution with the 

ordinary least square estimate at order one to 

four and sample size 𝑛 = 5000 
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Conclusion 

The performance of Beta distribution is better in 

all the sample sizes irrespective of the orders 

being used. Order 3 and 4 under MLE and order 

2,3,4 under OLS have the best estimates while 

the other sample sizes have small estimates and 

are the same. 

Beta distribution perform better than other 

distributions. The shape and scale parameter of 

Beta have little or no effect on the distribution 

itself. The result from the outlier inclusion 

showed that beta distribution was consistent 

irrespective of the distribution, sample sizes and 

the order of Autoregressive model. At sample 

size 100, the estimate of BURG and MLE are 

the same. At sizes 500 -5000 the estimates are 

approximately the same. 

Recommendations 

i) Beta distribution could be given 

more attention when considering a 

non-Gaussian situation. 

ii) Beta distribution could be used in 

place of Gaussian Distributions 

because it gives a better estimate 

even with outliers. 

iii) Beta distribution gives a robust 

result with 20%, 25% and 50% 

outliers therefore it is recommended 

as a better distribution in 

autoregressive model. 
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