

EISSN: 3043-6052

Vol 2, No 4: June 2025

An open Access Peer-Reviewed Journal

Original Article

A CROSS-SECTIONAL OBSERVATIONAL STUDY ON INTRAVENOUS HYDRALAZINE FOR MANAGING SEVERE HYPERTENSION IN PRE-ECLAMPTIC WOMEN IN A TERTIARY CENTRE, NIGERIA

Obinna Patrick Ezugwu¹, Mark Imhonikhe Ogbiti^{1*}, Ade Salami Isenalumhe², Afekhobe Jedidiah Suleiman Buraimoh², Yaya O.B.², Ekeng Offiong³

Affiliations

¹Department of Obstetrics and Gynaecology, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi, Nigeria

²Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria

Correspondence

Obinna Patrick Ezugwu; obisco80@yahoo.com

Email:

ABSTRACT

Severe hypertension remains a critical threat in the management of pre-eclampsia, particularly in low-resource settings where it significantly contributes to maternal and neonatal morbidity and mortality. Hydralazine, a direct-acting vasodilator, remains widely used due to its affordability and accessibility. However, concerns persist about its safety, delayed onset, and potential maternal and neonatal side effects, including reflex tachycardia, headaches, and risks to the foetus. This study assessed the clinical effectiveness and safety of intravenous hydralazine in women with severe pre-eclampsia in a tertiary hospital in Nigeria. It focused on blood pressure control, dosage needs, and associated maternal and neonatal outcomes. A cross-sectional observational study was conducted among 38 women with severe hypertension (SBP ≥160 mmHg or DBP ≥110 mmHg) beyond 28 weeks of gestation. Each received intravenous Hydralazine. Primary outcomes included time to achieve target blood pressure (<160/110 mmHg), number of doses required, and adverse effects. Data were analysed using SPSS version 23. Hydralazine was effective in 97.4% of cases (37/38), with a median time of 60 minutes (IQR: 40–80) to achieve blood pressure control. A median of three doses (IQR: 2–4) was required. No hypotension was observed. Maternal side effects included tachycardia (26.3%) and headache (18.4%). Neonatal outcomes were concerning,

³Department of Anaesthesia, Nile University, Abuja, Nigeria

with three early neonatal deaths (7.9%), suggesting possible foetal compromise despite effective maternal blood pressure control. In conclusion, intravenous Hydralazine remains a viable option for managing severe hypertension in pre-eclampsia where resources are limited. However, its delayed action and potential adverse effects—especially on neonates—highlight the need for cautious use, close monitoring, and further comparative research to enhance treatment safety and efficacy.

Keywords: Hydralazine, Severe Hypertension, Pre-eclampsia, Cross-Sectional Study, Efficacy, Safety, Neonatal Outcomes, Nigeria.

How to cite: Obinna PE, Mark IO, Isenalumhe SA, Afekhobe JSB, Yaya OB, Ekeng O. A Cross-Sectional Observational Study on Intravenous Hydralazine for Managing Severe Hypertension in Pre-Eclamptic Women in A Tertiary Centre, Nigeria. *Global Professionals Multidisciplinary Practices Journal*. 2025, 2(4):49-62

INTRODUCTION

Severe hypertension—defined as systolic blood pressure (SBP) ≥160 mmHg or diastolic blood pressure (DBP) ≥110 mmHg—in the setting of pre-eclampsia represents a critical obstetric emergency and a significant contributor to global maternal and perinatal morbidity and mortality.1 Estimates suggest that hypertensive disorders of pregnancy complicate up to 10% of all pregnancies worldwide, with severe hypertension occurring in approximately 1-2% of cases.^{1,2} In low- and middle-income countries (LMICs), where 99% of maternal deaths occur, hypertensive complications account for 14% of all maternal deaths globally—second only to hemorrhage.^{3,4} Immediate blood pressure control is essential to prevent life-threatening complications

such as stroke, eclampsia, acute kidney injury, pulmonary oedema, and foetal hypoxia or demise.⁵

Hydralazine hydrochloride, a direct-acting arteriolar vasodilator, has been used for decades in the acute management of severe hypertension in pregnancy.⁶ Its mechanism involves relaxation of vascular smooth muscle, leading to reduced peripheral resistance and a subsequent decrease in blood pressure.^{6,7} Due to its affordability, ease of availability, and historical use, Hydralazine continues to be widely used, particularly in LMIC settings where access to newer antihypertensives may be limited.

Despite its long-standing use, Hydralazine is not without controversy. It has been

associated with a range of maternal side reflex effects, including tachycardia, headache, nausea, vomiting, and dizziness, which may mimic or exacerbate symptoms of pre-eclampsia, complicating clinical assessment.^{8,9} More importantly, concerns persist regarding its potential to induce abrupt hypotension, potentially impairing uteroplacental perfusion and leading to adverse foetal outcomes such as distress, acidosis, or neonatal death. 10,11 As such, agents like Labetalol and Nifedipine have gained favour in recent years, supported by comparative trials suggesting improved tolerability and similar or superior efficacy profiles. 12,13

Given the ongoing use of Hydralazine in resource-limited environments, many particularly in sub-Saharan Africa, it remains critical evaluate its real-world This performance. cross-sectional observational study was conducted to describe the clinical effectiveness, doseresponse patterns, and maternal and neonatal safety outcomes associated with the use of intravenous Hydralazine in the management of severe hypertension in pre-eclamptic women at a tertiary care centre in Nigeria—a region with a high burden of hypertensive disorders in pregnancy.

MATERIALS AND METHODS

Study Setting and Design

This was a hospital-based, prospective, crosssectional observational study conducted in a tertiary healthcare facility in Nigeria. The study documented outcomes for patients who received intravenous Hydralazine as part of routine clinical management for severe hypertension in pre-eclampsia.

Study Population

The study included 38 consenting pregnant diagnosed with women pre-eclampsia complicated by severe hypertension (SBP \geq 160 mmHg and/or DBP ≥ 110 mmHg) at a gestational age of 28 weeks or more, with pregnancies, who received singleton intravenous Hydralazine. Inclusion criteria for data documentation were: (1) consenting gravid clients with pre-eclampsia complicated by severe hypertension after 28 weeks of gestation, (2) singleton pregnancies, and (3) receipt of intravenous Hydralazine for blood pressure management. Exclusion criteria were conditions where Hydralazine would be clearly contraindicated (e.g., tachyarrhythmias).

Hydralazine Intervention

IV Hydralazine was administered per hospital protocol, starting with a 5mg bolus

over 5–10 minutes. Blood pressure and pulse were monitored every 20 minutes. If SBP remained ≥160 mmHg or DBP ≥110 mmHg, additional 5mg doses were given, up to a cumulative maximum of 30mg. The goal was to reduce SBP below 160 mmHg and DBP below 110 mmHg. Persistent hypertension after 30mg was classified as severe and managed with an alternative agent.

Data Collection and Outcome Measures

Data were prospectively collected through patient records, observations, and interviews. During Hydralazine treatment, blood pressure and pulse were monitored every 20 minutes.

Efficacy outcomes included time to BP control, total doses required, single-dose response rate, and overall success. Safety outcomes included maternal side effects (e.g.,

hypotension, nausea) and neonatal outcomes (e.g., distress, low Apgar scores, SCBU admission, early death).

Ethical Considerations

Ethical approval was obtained from the HREC of the tertiary care centre. Informed written consent was secured from all participants for data collection and use in research, with assurances of confidentiality and no impact on care quality for non-participation.

Statistical Analysis

Data from the 38 participants were analyzed using SPSS Version 23.0. Descriptive statistics (median, IQR, frequencies, percentages) were used to summarize the data.

RESULTS

Table 1: Sociodemographic characteristics of participants

Variable	Frequency (n=38)	Percentage (%)
Age groups (years)		
17 - 24	11	28.9
25 - 29	9	23.7
30 - 34	7	18.4
35 - 39	7	18.4
40 - 44	4	10.5

Ethnic group

Hausa	16	42.1
Fulani	9	23.7
Igbo	2	5.3
Yoruba	1	2.6
Others	10	26.3
Educational status		
Educational status Non formal	4	10.5
	4 11	10.5 28.9
Non formal		
Non formal Primary	11	28.9

Table 1 shows that among the 38 respondents, those aged 17–24 years were the most represented, numbering 11 (28.9%), followed by 9 (23.7%) aged 25–29 years. Both the 30–34 and 35–39 age groups accounted for 7 (18.4%) participants each, while 4 (10.5%) were aged 40–44 years.

Ethnically, Hausa respondents formed the largest group, 16 (42.1%), followed by Fulani

at 9 (23.7%). Others, including minority ethnicities not individually listed, comprised 10 (26.3%). Igbo and Yoruba participants were 2 (5.3%) and 1 (2.6%) respectively. Regarding educational status, 13 (34.2%) had secondary education, 11 (28.9%) had primary education, and 10 (26.3%) attained tertiary education. Only 4 (10.5%) had no formal education.

Table 2: Obstetric history of participants

Variable	Frequency (n=38)	Percentage (%)
Parity		
Nulliparous	16	42.1
Multiparous	9	23.7
Primiparous	7	18.4

Grand multiparous	6	15.8
Gestational age		
28 - < 37 weeks	10	26.3
≥37 weeks	28	73.7
Booking status		
Booked	21	55.3
Unbooked	17	44.7
Mode of delivery		
Vaginal	14	36.8
Caesarean section	24	63.2

Table 2 shows that out of the 38 participants, 16 (42.1%) were nulliparous. Multiparous women accounted for 9 (23.7%), while 7 (18.4%) were primiparous and 6 (15.8%) were grand multiparous. Most of the women, 28 (73.7%), had gestational age \geq 37 weeks, while 10 (26.3%) were between 28 and \leq 37

weeks. Regarding booking status, 21 (55.3%) had booked antenatal care, whereas 17 (44.7%) were unbooked. The mode of delivery was caesarean section for 24 (63.2%) participants, while 14 (36.8%) had vaginal delivery.

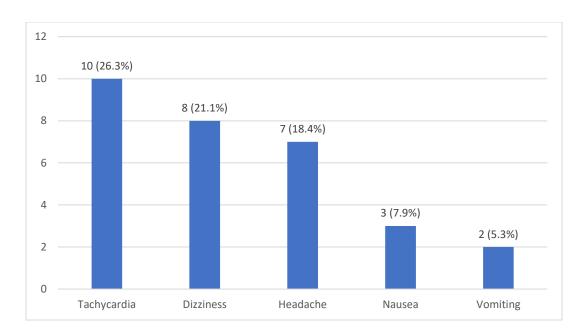


Figure 1: Complications experienced with hydralazine among respondents

Tachycardia was the most common maternal complication, observed in 10 (26.3%) of the women. Dizziness was experienced by 8 (21.1%) women, while headache was

reported by 7 (18.4%) women. Nausea occurred in 3 (7.9%) women, and vomiting was the least common of the recorded side effects, affecting 2 (5.3%) women.

Table 3: Median (IQR) of blood pressure and requirements for its control

Variable	Median (IQR)		
Blood pressure (mmHg)			
Systolic blood pressure	172.5 (164.0 – 199.0)		
Diastolic blood pressure	119.5 (110.0 – 127.0)		
Requirements to control blood pressure			
Time (minutes)	60.0 (40.0 - 80.0)		
Number of doses	3.0 (2.0 – 4.0)		

Table 3 shows that the median systolic blood pressure recorded was 172.5 mmHg (IQR: 164.0–199.0), while the diastolic median was 119.5 mmHg (IQR: 110.0–127.0). The time

required to control blood pressure had a median of 60.0 minutes (IQR: 40.0–80.0). The median number of hydralazine doses administered was 3.0 (IQR: 2.0–4.0).

Table 4: Number of doses required for blood pressure control and overall success rate with hydralazine

Frequency $(n = 38)$	Percentage (%)					
Number of doses required to achieve blood pressure control (n=37)						
7	18.9					
16	43.2					
14	37.8					
37	97.4					
1	2.6					
	e 7 16 14 37					

Among the 37 patients with complete dosing data, 16 (43.2%) required 2–3 doses of hydralazine to control their blood pressure. Fourteen (37.8%) needed 4 or more doses, while 7 (18.9%) responded to just a single

dose. Overall, hydralazine was successful in controlling blood pressure in 37 (97.4%) of the 38 participants. Only 1 (2.6%) experienced treatment failure.

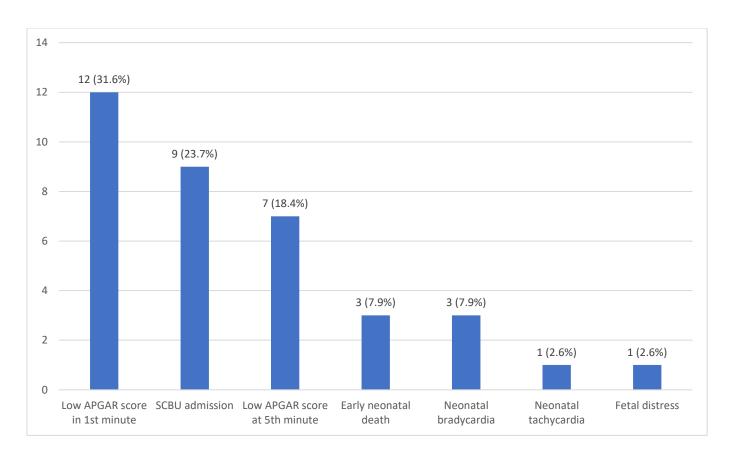


Figure 2: Foetal and neonatal complications among respondents

A low APGAR score in the 1st minute was the most frequent adverse neonatal outcome, recorded in 12 (31.6%) neonates. Special Care Baby Unit (SCBU) admission was required for 9 (23.7%) neonates. A low APGAR score at the 5th minute was observed

in 7 (18.4%) neonates. Early neonatal death occurred in 3 (7.9%) cases, and neonatal bradycardia was also recorded in 3 (7.9%) neonates. Neonatal tachycardia affected 1 (2.6%) neonate, and foetal distress was also observed in 1 (2.6%) case.

DISCUSSION

Hydralazine took a median of 60 minutes to control severe hypertension in this study. This is considerably slower than the 45 minutes reported in a similar study conducted in Edo State¹⁴ and the 40 minutes observed in research from Abuja.¹⁵ Another study from

India reported an even faster mean time of 22.4 minutes for Hydralazine. ¹⁶ This slower control time may be due to the 20-minute interval between doses, as per the observed protocol, which could inherently prolong the time to achieve blood pressure control

compared to protocols with shorter intervals doses of other agents. or escalating Additionally, the direct vasodilatory mechanism of Hydralazine requires careful, titration to avoid excessive gradual hypotension, which may also extend the time needed to reach target blood pressure in some patients. The severity and duration of hypertension before presentation in the patient population might further contribute to this effect. A longer time to control blood pressure translates to extended maternal exposure to the risks associated with severe hypertension, including cerebrovascular complications and eclampsia. Therefore, clinicians should be aware of Hydralazine's relatively slower onset of action compared to alternatives like Labetalol. This consideration is important when rapid blood pressure reduction is critical.

Despite the slower onset, Hydralazine showed a very high primary success rate of 97.4%, with only one patient failing to respond. This aligns with findings from other studies conducted in Nigeria, where success rates as high as 100% have been reported. Hydralazine's potency as a direct-acting arteriolar vasodilator enables it to effectively counteract the intense vasospasm characteristic of pre-eclampsia, resulting in reliable blood pressure reduction once an

dose is administered. adequate dependable efficacy is a significant clinical advantage, particularly in settings where Hydralazine is the most accessible, familiar, affordable parenteral potent antihypertensive. Therefore, it remains a viable therapeutic option for managing hypertension in pre-eclampsia, severe especially as a second-line agent or when first-line drugs are contraindicated or unavailable.

The study also confirmed Hydralazine's notable side effect profile, with maternal tachycardia occurring in 26.3% and headache in 18.4% of patients. These rates are consistent with those reported in other studies, including research in Nigerian populations, which found headaches to be significantly more common with Hydralazine compared to Labetalol. 19,20,21 These side effects arise from Hydralazine's vasodilatory action, which triggers a baroreceptormediated reflex sympathetic stimulation leading to tachycardia and palpitations. Cerebral vasodilation can contribute to headaches. Such side effects can distressing and complicate clinical assessment, as headache symptoms may mimic neurological signs of worsening preeclampsia, such as impending eclampsia. This similarity could lead to diagnostic

challenges or unnecessary interventions. Therefore, clinicians using Hydralazine should be vigilant in monitoring and managing these common side effects and provide appropriate patient education.

A particularly concerning finding was the occurrence of three early neonatal deaths (7.9%) in the Hydralazine-exposed group, alongside one case of foetal distress. Similar studies have reported associations between Hydralazine use and adverse perinatal outcomes, including higher rates of caesarean section and low Apgar scores.^{20,22} Neonatal deaths in severe pre-eclampsia are multifactorial. Hydralazine's but less predictable maternal blood pressure reductions may contribute to acute decreases in uteroplacental perfusion, especially in foetuses already compromised intrauterine growth restriction or prematurity. The underlying severity of maternal disease also plays a crucial role. Managing preeclampsia aims to optimize outcomes for both mother and child; therefore, any therapy that potentially increases neonatal risk requires careful consideration. An early neonatal death rate of 7.9% in this cohort signals a significant safety concern. Continuous foetal heart rate monitoring is essential when using Hydralazine, with preparedness for rapid intervention if foetal

distress occurs. Potential neonatal adverse effects must be a key factor in the risk-benefit analysis when selecting Hydralazine, particularly where alternative agents with potentially better neonatal safety profiles exist. Use should be cautious in cases with known foetal compromise.

CONCLUSION

Hydralazine demonstrated high efficacy (97.4%) in controlling severe hypertension among women with pre-eclampsia; however, this was often achieved with a relatively slower onset of action. Additionally, maternal side effects such as tachycardia (26.3%) and headache (18.4%) were common. Most notably, an early neonatal mortality rate of 7.9% was observed, raising significant concerns about perinatal safety. While causality cannot be definitively inferred from this observational study, the association underscores the importance of cautious use, especially in settings where foetal compromise is suspected.

Given its reliable antihypertensive action and availability, Hydralazine may remain a valuable option—particularly as a second-line agent or where alternatives like Labetalol are contraindicated or inaccessible. However, its use must be accompanied by close maternal and foetal monitoring, with prompt

access to emergency obstetric and neonatal care.

Limitations

This study was limited by its relatively small sample size and single-centre design, which may affect generalizability. Additionally, variations in provider practices and delay in intervention timing could have influenced treatment outcomes.

Recommendations for Future Research

REFERENCES

- 1. Khedagi AM, Bello NA. Hypertensive Disorders of Pregnancy. Cardiol Clin. 2020;39(1):77.
 - doi:10.1016/J.CCL.2020.09.005
- 2. Bokuda K, Ichihara A. Preeclampsia up to date—What's going on? Hypertension Research. 2023;46(8):1900-1907. doi:10.1038/s41440-023-01323-w
- 3. Cresswell JA, Alexander M, Chong MYC, et al. Global and regional causes of maternal deaths 2009-20: a WHO systematic analysis. Lancet Glob Health. Published online March 7, 2025. doi:10.1016/S2214-109X(24)00560-6
- 4. Maternal Health | WHO | Regional Office for Africa. Accessed May 30, 2025. https://www.afro.who.int/healthtopics/maternal-health

Larger multicentre studies with randomized controlled designs are needed to directly Hydralazine with other compare antihypertensives, particularly in terms of foetal safety profiles. Further research should also explore strategies to minimize maternal side effects and optimize dosing intervals for faster blood pressure control.

Conflict of Interest

The authors declare no conflict of interest.

- 5. Dimitriadis E, Rolnik DL, Zhou W, et al. Pre-eclampsia. Nature Reviews Disease Primers. 2023;9(1):1-22. doi:10.1038/s41572-023-00417-6
- 6. Podymow T, August P. Update on the Use of Antihypertensive Drugs in Pregnancy. 2008;51(4 Hypertension. **PART** SUPPL.):960-969. doi:10.1161/HYPERTENSIONAHA.106 .075895
- 7. McComb MN, Chao JY, Ng TMH. Direct Vasodilators and Sympatholytic Agents. J Cardiovasc Pharmacol Ther. 2016;21(1):3-19. doi:10.1177/1074248415587969
- 8. Hypertension in pregnancy including preeclampsia. Obstetric Anaesthetists Handbook. 2020. OAH13-2020.

- Laurent S. Antihypertensive drugs.
 Pharmacol Res. 2017;124:116-125.
 doi:10.1016/j.phrs.2017.07.026
- 10. Herman LL, Bruss ZS, Tivakaran VS. Hydralazine. *xPharm: The Comprehensive Pharmacology Reference*. Published online March 28, 2023:1-5. doi:10.1016/B978-008055232-3.61893-8
- 11. Rita Baggio MF, Martins WP, Calderon AS, et al. Changes in fetal and maternal Doppler parameters observed during acute severe hypertension treatment with hydralazine or labetalol: a randomized controlled trial. *Ultrasound Med Biol*. 2011.

doi:10.1016/j.ultrasmedbio.2010.10.006

- 12. S D, Novri DA, Hamidy Y, Savira M. Effectiveness of nifedipine, labetalol, and hydralazine as emergency antihypertension in severe preeclampsia: a randomized control trial. *F1000Res*. 2023;11:1287. doi:10.12688/F1000RESEARCH.12594
 - doi:10.12688/F1000RESEARCH.12594 4.2
- 13. Patel P, Koli D, Maitra N, Sheth T, Vaishnav P. Comparison of efficacy and safety of intravenous labetalol versus hydralazine for management of severe hypertension in pregnancy. *J Obstet*

- *Gynaecol India*. 2018;68(5):376-381. doi:10.1007/S13224-017-1053-9
- 14. Ehikioya E, Okobi OE, Beeko MAE, et al. Comparing intravenous labetalol and intravenous hydralazine for managing severe gestational hypertension. *Cureus*. 2023;15(7):e42332.

doi:10.7759/CUREUS.42332

- 15. Nombur LI, Agida ET, Isah AY, Ekele BA. A comparison of hydralazine and labetalol in the management of severe preeclampsia. *J Womens Health Care*. 2014;3. doi:10.4172/2167-0420.1000200
- 16. Gaur N, Kathuria P. Hydralazine versus labetalol for acute control of blood pressure in patients with severe preeclampsia: a randomized controlled trial. *Int J Reprod Contracept Obstet Gynecol*. 2019;8(4):1626-1629. doi:10.18203/2320-

1770.IJRCOG20191230

17. Adebayo JA, Nwafor JI, Lawani LO, Esike CO, Olaleye AA, Adiele NA. Efficacy of nifedipine versus hydralazine in the management of severe hypertension in pregnancy: a randomised controlled trial. *Niger Postgrad Med J.* 2020;27(4):317-324.

doi:10.4103/NPMJ.NPMJ 275 20

18. Muhammad S, Usman H, Dawha YM, Yahya A, Yekeen A, Bako B. Comparison

of intravenous labetalol and hydralazine for severe hypertension in pregnancy in Northeastern Nigeria: a randomized controlled trial. *Pregnancy Hypertens*. 2022;29:1-6.

doi:10.1016/J.PREGHY.2022.05.001

- 19. Antza C, Doundoulakis I, Akrivos E, et al. Hydralazine in pregnancy. *J Hypertens*. 2019;37:e40. doi:10.1097/01.HJH.0000570764.05099.
 8A
- 20. Magee LA, Cham C, Waterman EJ, Ohlsson A, Von Dadelszen P. Hydralazine for treatment of severe hypertension in pregnancy: meta-analysis. *BMJ*.

- 2003;327(7421):955. doi:10.1136/BMJ.327.7421.955
- 21. Otutoaja U, Olabisi Timothy A, Olumide Adewara E, et al. Labetalol versus hydralazine in the management of severe pre-eclampsia at tertiary hospitals in a low-resource setting: a randomised controlled trial. *Open J Obstet Gynecol*. 2023;13:1058-1067.

doi:10.4236/ojog.2023.136090

22. Wajid R, Majeed T, Zahid M. To compare the side effects of intravenous labetalol vs intravenous hydralazine in management of pregnancy induced hypertension. *P J M H S.* 2018;12(1):1563-1566.